
Compression Planner for Time Series
Database with GPU Support

Piotr Przymus1(B) and Krzysztof Kaczmarski2

1 Nicolaus Copernicus University, Toruń, Poland
eror@mat.umk.pl

2 Warsaw University of Technology, Warsaw, Poland
k.kaczmarski@mini.pw.edu.pl

Abstract. Nowadays, we can observe increasing interest in processing
and exploration of time series. Growing volumes of data and needs of effi-
cient processing pushed research in new directions. This paper presents
a lossless lightweight compression planner intended to be used in a time
series database system. We propose a novel compression method which is
ultra fast and tries to find the best possible compression ratio by compos-
ing several lightweight algorithms tuned dynamically for incoming data.
The preliminary results are promising and open new horizons for data
intensive monitoring and analytic systems.

Keywords: Time series database · Lightweight compression · Lossless
compression · GPU · CUDA · GPGPU · Compression optimization

1 Introduction

Background – Time Series Databases. Specialized time series databases
play important role in industry storing monitoring data for analytical purposes.
These systems are expected to process and store millions of data points per
minute, 24 h a day, seven days a week, reading terabytes of logs. Due to regres-
sion errors checking and early malfunction prediction these data must be kept
with fine grained resolution including all details. Solutions like OpenTSDB [17],
TempoDB [4] and others deal very well with these kind of tasks. Most of them
work on a clone of Big Table approach from Google [8], a distributed hash table
with mutual ability to write and read data in the same time.

Querying large volumes of time series may be time consuming and even in
case of big clusters leads to system slowdown. On the other hand monitoring of
any infrastructure requires real-time or near real-time response. What is more

P. Przymus: The project was partially funded by Marshall of Kuyavian-Pomeranian
Voivodeship in Poland with the funds from European Social Fund (EFS) in the form
of a PhD scholarships. “Krok w przysz�lość – stypendia dla doktorantów V edycja”
(Step in the future – PhD scholarships V edition).
K. Kaczmarski: The project was partially funded by National Science Centre, deci-
sion DEC-2012/07/D/ST6/02483.

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XV, LNCS 8920, pp. 36–63, 2014.
DOI: 10.1007/978-3-662-45761-0 2

Compression Planner for Time Series Database with GPU Support 37

important it is hard to predict a priori what kind of queries may be needed.
Various problems may be only investigated by checking all possible correlations.
Therefore a system must perform random queries on large data sets. Classical
databases even using large computational clusters and map reduce approach can
hardly fulfil this requirement since time series processing not only requires large
volumes of data but also has computational demands: interpolation, integration
and aggregation of millions of time series.

The above problems may be easily handled by a database system equipped
with a GPU device used as a coprocessor [7]. An average internet service with
about 10 thousands of simultaneously working users may generate around 80 GB
of logs every day. If we consider an in-memory database system these data after
a compression could fit into two NVIDIA Tesla devices and an average query
may be processed within milliseconds compared to seconds or minutes in case of
standard systems.

GPU device has its own memory or a separate area in the CPU main memory.
CPU and GPU may only cooperate in a shared nothing architecture.Thus, the
data has to be explicitly transferred from the CPU main memory to the GPU
main memory and then back to CPU. Additional data transfer in the pipeline
of a query processing often introduces significant overhead which cannot be
mitigated. This cost is therefore an important component of the query execution
time prediction.

Time Series Compression. Big Table based systems compress data before
writing to a long-term storage. It is much more efficient to store data for some
time in memory or in a disk buffer and compress it before flushing to disk. This
process is known as a table row rolling. Systems like HBase [1], Casandra [10] and
others offer compression for entire column family. This kind of general purpose
compression is not optimized for particular data being stored (i.e. various time
series with different compression potential stored in one column family). Simi-
larly in-memory database systems based on GPU processing (like ParStream [3])
tend to pack as many data into GPU devices global memory as possible.

Compression not only improves overall system behaviour by optimizing data
transfer but also enables GPU co-processing by minimization of additional data
transfer costs. Figure 1 shows the influence of lightweight compression on query
processing time including input data reading, processing and creating output.
The bar on the left (CPU) presents the basic query processing pipeline with three
activities: reading, processing and creating output. (GPU) bar shows processing
time on GPU processing which additionally requires some time for data copying.
Processing time is much shorter but additional copying makes overall speed-up
not so impressive. The next column presents the same configuration but with
lightweight compression of the data. Now copying time is much shorter. Thanks
to GPU abilities data decompression time is not influencing the overall time
noticeably. In the contrary the same approach but run purely on CPU suffers
from long decompression time (the last column).

Our previous work on time series compression problems [19–21] and GPU uti-
lization in time series processing showed that GPU may be successfully introduced

38 P. Przymus and K. Kaczmarski

Fig. 1. General query processing time influenced by lightweight compression and GPU
processing.

as a database coprocessor if accompanied by a lightweight compression of the
stored data. We created a dynamic compression planner which was able to com-
bine several lightweight compression methods in order to achieve the best com-
pression results. However, the optimal compression may not always be acceptable
due to possibly long decompression time.

In this work we extend the previous findings by a new multi-objective com-
pression planner which may find a near-optimal1 multi objective compression
plan.

Section 2 presents a general view of the system including time series data
model and data flow. Section 3 describes used lightweight compression meth-
ods which are suitable for fast GPU processing. Sections 4, 5 and 6 contain the
main contribution of our work: the dynamically optimized compression system
including plans estimation and bi-objective plan selection. Experimental run-
time results are contained in Sect. 7 while Sect. 8 contains final remarks and
conclusions.

1.1 Motivation and Related Work

Compression of time series is an interesting and widely analysed computational
problem. Lossless methods often use some general purpose compression algo-
rithms with several modifications according to knowledge gathered from data. On
the other hand, lossy compression approximate data using, for instance, splines,
piecewise linear approximation or extrema extraction [14]. For industrial moni-
toring systems, lossy compression cannot be used due to possible degradation of
anomalies.

An important challenge is to improve compression factor with an acceptable
processing time in case of variable sampling periods. Interesting results in the
1 In this work we understand optimal compression as the best compression within

available lightweight algorithms.

Compression Planner for Time Series Database with GPU Support 39

filed of lossless compression done on GPU were presented by Fang et al. [13].
Using a compression planner it was possible to achieve significant improvement
in overall query processing on GPU by reducing data transfer time from RAM
to global device’s memory space. The strategy applied in our work is based on
statistics calculated from inserted data and used to find an optimal cascaded
compression plan for the selected lightweight methods.

The GPU compression topic was raised in several studies. Interesting results
on GPU compression where presented by Andrzejewski et al. [5] where Word
Aligned Hybrid compression algorithm for GPU was presented. Wu et al. [24]
discussed implementation of Lempel-Ziv 77 (LZ77) algorithm on CUDA frame-
work and showed that time complexity of this algorithm was to high on GPU
processor when compared to CPU classical implementation. This was caused by
too many branches in the algorithm which are not suited well for CUDA model
of parallelism.

In a time series database we often observe data grouped into portions of very
different characteristics. Optimal compression should be able to apply different
compression plans for different time series and different time periods.

In case of lossless compression one can use common algorithms (ZIP, LZO)
which tend to consume lot of computation resources [6,26] or lightweight meth-
ods which are faster but not so effective. Dynamic composition of several com-
pression methods may improve this significantly by combination of properties of
both approaches: it is lossless but much faster than common algorithms, offers
acceptable compression ratios and may be computed incrementally. Selection
of an optimal strategy (among available lightweight compression algorithms) is
done upon data statistical information.

However, the challenge of multiprocessor and multi-GPU computational
nodes raise another question: is it possible to improve these methods further
including hardware specific information and estimated decompression time? In
this work we extend our previous findings by a new multi-objective compression
planner which may find an optimal compression plan under compression ratio
and decompression speed optimization objectives. A database system will be
able to benefit by better estimation of time constraints for query execution.

2 Time Series Database System with Compressed
Storage

A typical time series database consists of three layers: data insertion module,
data storage and querying engine. This section presents a general view of a
prototype heterogeneous time series database system developed as a test-bed
for our compression algorithms and optimization methods. It uses GPU as a
coprocessor for database operations and data compression. Optimal resources
(GPU and CPU) utilization requires a heterogeneous query planner which is
addressed in another paper [22]. Here, we shall only focus on assuring optimal
compression for this system.

40 P. Przymus and K. Kaczmarski

2.1 Time Series Data Model

The data acquisition from ongoing measurements, industrial processes moni-
toring [15], scientific experiments [23], stock quotes or any other financial and
business intelligence sources has got continuous characteristic. These discrete
observations T are represented by pairs of a timestamp and a numerical value
(ti, vi) with the following assumptions:

– number of data points (timestamps and their values) in one time series should
not be limited;

– each time series should be identified by a name which is often called a metric
name;

– each time series can be additionally marked with a set of tags describing
measurement details which together with metric name uniquely identifies time
series;

– observations may not be done in constant time intervals or some points may
be missing, which is probable in case of many real life data (Fig. 2).

(a) (b)

Fig. 2. Time series. (a) fixed time measurements (b) variable time measurements. Char-
acteristics of the plot (s1 – piecewise constant, s2 – piecewise linear) depends on the
interpretation of the measured data value.

The last assumption is important since industrial applications often cannot
guarantee either constant measurement period or correct measurement and data
transfer.

Our prototype system does not limit possible data which can be inserted
and analysed. The only requirement of our system is that data must have a
form of time series, which we understand as a collection of observations made
sequentially in time [9].

In the presented data model known from for example OpenTSDB [2] one time
series is uniquely identified with a metric name and a set of tags. Combination of
tags let a user express many different queries in a very simple way. For instance
for the input data (timestamp, metric name, value, tags):

1386806400 cpu.load 0.20 node=alpha type=system
1386806400 cpu.load 0.10 node=alpha type=user
1386806401 cpu.load 0.30 node=alpha type=system

Compression Planner for Time Series Database with GPU Support 41

1386806401 cpu.load 0.20 node=alpha type=user
1386806400 cpu.load 0.05 node=beta type=system
1386806400 cpu.load 0.10 node=beta type=user
1386806401 cpu.load 0.05 node=beta type=system
1386806401 cpu.load 0.40 node=beta type=user

we could issue a query for an overall average system type processes processor
load for all known nodes for one day by:

q?start=2013-12-12:00:00&
end=2013-12-12:23:59&m=avg:cpu.load{type=system}

receiving:

1386806400 cpu.load 0.135 node=alpha type=system
1386806401 cpu.load 0.165 node=alpha type=system

or for a maximum processor load among all known nodes and processes types:

q?start=2013-12-12:00:00&
end=2013-12-12:23:59&m=max:cpu.load

receiving:

1386806400 cpu.load 0.20
1386806401 cpu.load 0.40

2.2 Data Insertion

In this section we briefly describe data flow in our system, which is composed of
three layers: data insertion, long term storage and data retrieval.

The insertion layer is preceded by a set of collectors which gather data from
sensors, probes or other sources. These collectors sending data to the data inser-
tion interface are considered external and beyond the scope of this paper.

The general view of our system’s basic components and data flow is not
different from other databases. The noticeable extension includes GPU and CPU
processing. The main data flow indicates: data collection, data buffering, data
storing and data querying. Data buffering may use compression on GPU or CPU
side. Obviously, CPU compression usually does not require any additional data
transfers since Data Buffer and CPU compression may be done by the same
device and within the same memory space. However, compression performed by
GPU requires extra time for data transferring between RAM and GPU device’s
global memory. After the data is compressed it may be sent to the database
daemon which inserts them into a long term storage.

Similar situation occurs during data retrieval and query evaluation. Frag-
ments of data required for particular query need to be decompressed, filtered
and transformed according to the query parameters. All these operations may
be done within CPU or with GPU used as an external coprocessor.

42 P. Przymus and K. Kaczmarski

Figure 3 indicated the possible transitions and data flow between components
in our database system. Each transition may have non zero data transfer time.
Each node may transform data changing their size but also consuming time.
A sample data insertion procedure could involve the following path: Data Col-
lector, Data Buffer, GPU Compression, Data Buffer, Database Daemon, Storage.
Data retrieval contains more nodes, transitions and possible paths. For example,
a path of a query evaluated on CPU but with data decompressed on GPU will
contain the sequence: Storage → Query Engine → GPU Decompression → Query
Engine → CPU Query Processing → Query Engine → Client. Selection of an
optimal query plan must involve distributed data processing on heterogeneous
devices which we addressed in [22].

Minimisation of data transfer time in a heterogeneous database system is the
main driver for the research presented in this paper. Our approach focuses on
finding the best possible compression method suited for certain incoming data
but from two points of view: compression ratio and decompression time. Both
these goals are crucial for current time series database systems.

Fig. 3. A simplified data flow diagram including data insertion (light grey), data
retrieval (dark grey) and storage (white) layers. Each transition may introduce addi-
tional data transfer cost. Each node may transform data influencing their size.

Time Series Storage. One of the most important properties of a time series
database system is high performance and scalability. In many industrial solu-
tions these assumptions lead to an architecture based on Big Table [8] and Map
Reduce [11] applications.In such case time series data are stored at two different
levels in the database:

Compression Planner for Time Series Database with GPU Support 43

– Data buffer – acts as a buffer for new data which enter the database. Data
from the data buffer are periodically compacted, compressed and sent to the
data archive. The buffer is composed of two separated data blocks: first one
with timestamps and second one with values. This allows us to use different
compression plans for both blocks.

– Permanent Storage – works as a long term data archive based on key-value
table architecture. Metric name, tags and starting time are encoded in row
key and column key.

Flow of Input Data. The data acquisition from ongoing measurements, indus-
trial processes monitoring [15], scientific experiments [23], stock quotes or any
other financial and business intelligence sources has got continuous characteris-
tics. We assume that data collectors keep sending data to the system all the time
and the system must respond in the real-time. Tight efficiency constraints must
be met in order to assure that the data will not wait before being consumed for
unacceptably long time.

Due to optimization purposes, data sent to the data storage should be ordered
and buffered into portions, minimizing necessary disk operations but also min-
imizing the distributed storage nodes intercommunication. Buffering also pre-
pares data to be compressed and stored optimally in an archive. Simplicity of
data model imposed separated column families for compressed and raw data.
Time series are separately compacted into larger records (by a metric name and
tags) containing a specified period of time (e.g. 15 min, 2 h, 24 h – depending on
the number of observations). This step directly preceded dynamic compression
described in the next sections.

Finally, when a single record in a buffer is compressed and ready to be send to
the long term permanent storage it is flushed and delivered to a NoSQL database
which processes it according to its internal rules.

2.3 Data Retrieval

The last important part of the system is the query engine responsible for user-
database interactions.

Execution of database queries is an example of a successful application of
GPU co-processors which may accelerate numerous database computations, e.g.
relational query processing, query optimization, database compression or sup-
porting time series databases [7,20,21].

Distribution of workload between numerous CPU and GPU devices require
careful planning of query execution strategy including not only data transfer
costs but also device load, its efficiency or even energy consumption. In our
previous publication we elaborated on bi-objective query planner which achieved
interesting results in case of a heterogeneous query planning [22].

For the purposes of this work we indicate that the influence of compression
methods used in a data storage on query evaluation is twofold. First, it may
dramatically reduce data transfer time between system components and second,
it may increase query evaluation time by additional decompression.

44 P. Przymus and K. Kaczmarski

2.4 Searching for Optimal Compression

In any database system the data transfer time between distributed nodes or
components significantly influences the overall performance of the system. This
situation may be partially improved by compression but only if its additional cost
is justified by gained speed up. Fine tuned lightweight compression methods offer
interesting compression ratio with acceptable performance, especially if used on
a GPU device [20,21].

In order to select an optimal compression method one must consider the
following factors:

– Predicted compressed buffer size
– Predicted compression and decompression time
– Computational resources needed
– Additional method’s properties.

Achieving best possible compression ratio and shortest possible working time
are two contradicting objectives. Thus, a definition of an optimum solution set
should be established. In this paper we use the predominant Pareto optimal-
ity [16].Given a set of choices and a way of valuing them, the Pareto set consists
of choices that are Pareto efficient. A set of choices is said to be Pareto efficient
if we cannot find a reallocation of those choices such that the value of a single
choice is improved without worsening values of others choices.As bi-objective
optimization is NP-hard, we need an approximate solution [18].

Our compression planner computes the best compression scheme upon all
available algorithms, knowing their properties and input data characteristics.

3 Lightweight Compression Algorithms

In this section we present the compression algorithms and their modifications for
the parallel execution on a GPU. Detailed description of presented compression
algorithms may be found in [12,13,20,26].

Patched Lightweight Compression. The main drawback of many light-
weight compression schemes is that they are prone to outliers in the data frame.
For example, consider following data frame {1, 2, 3, 2, 2, 3, 1, 1, 64, 2, 3, 1, 1}, one
could use the 2 bits fixed-length compression to encode the frame, but due to
the outlier (value 64) we have to use 6-bit fixed-length compression or more
computationally intensive 4-bit dictionary compression. Solution to the prob-
lem of outliers has been proposed in [26] as a modification to three lightweight
compression algorithms. The main idea was to store outliers as exceptions. Com-
pressed block consists of two sections: the first keeps the compressed data and
the second exceptions. Unused space for exceptions in the first section is used to
hold the offset of the following exceptions in the data in order to create linked
list, when there is no space to store the offset of the next exception, a compul-
sive exception is created [26]. For large blocks of data, the linked lists approach
may fail because the exceptions may appear sparse thus generate a large number

Compression Planner for Time Series Database with GPU Support 45

of compulsory exceptions. To minimise the problem various solutions have been
proposed, such as reducing the frame size [26] or algorithms that do not generate
compulsive exceptions [12,25]. The algorithms in this paper are based largely on
those described by Yan [25]. In this version of the compression block is extended
by two additional arrays - exceptions position and exceptions remainders val-
ues (i.e. the remaining bits). Decompression involves extracting data using the
underlying decompression algorithm and then applying a patch (from excep-
tions remainders array) in the places specified by the exceptions positions. As
exceptions are separated, data patching can be done in parallel. During compres-
sion, each thread manages two arrays for storing exception values and positions.
After compression, each thread stores exceptions in the shared memory, simi-
larly exceptions from shared memory are copied to the global memory. Patched
version of algorithms are only selected if compression ratio improves. Otherwise
non patched algorithms are used. Therefore complex exceptions treatment may
be omitted speeding up the final compression.

Float to integer scaling (SCALE). Converts float values to integer values by
scaling. This solution can be used in case where values are stored with given
precision. For example, CPU temperature 56.99 can be written as 5699. The
scaling factor is stored in compression header.

Differential representation (DELTA). Stores the differences between suc-
cessive data points in frame while the first value is stored in the compression
header. Works well in case of sorted data, such as measurement times. For exam-
ple, let us assume that every 5 min the CPU temperature is measured starting
from 1367503614 to 1367506614 (Unix epoch timestamp notation), then this
time range may be written as {300, . . . , 300}.

(Patched) Fixed-length Minimum Bit Encoding (PFL and FL). Fl and
Pfl compression works by encoding each element in the input with the same
number of bits thus deleting leading zeros at the most significant bits in the bit
representation. The number of bits required for the encoding is stored in the
compression header. The main advantage of the Fl algorithm (and its variants)
is the fact that compression and decompression are highly effective on GPU
because these routines contain no branching-conditions, which decrease paral-
lelism of SIMD operations. For the best efficiency dedicated compression and
decompression routines are prepared for every bit encoding length with unrolled
loops and using only shift and mask operations.Our implementation does not
limit minimum encoding length to size of byte (as in [13]). Instead each thread
(de)compresses block of eight values, thus allowing encoding with smaller num-
ber of bits. For example, consider following data frame {1, 2, 3, 2, 2, 3, 1, 2, 3, 1, 1},
one could use the 2 bits fixed-length compression to encode the frame.

(Patched) Frame-Of-Reference (PFOR and FOR). Works similarly to Fl
and Pfl, except before compression it transforms each value into an offset
from the reference value (for example smallest value) in compression block.
Reference value is then stored in compression header. In this situation, we
need exactly �log2(max −min +1)� bits to encode each value in the frame.

46 P. Przymus and K. Kaczmarski

For example, this is useful when storing measurement times, consider time range
{1367503614, . . . , 1367506614}, then using for we only need �log2(1367506614 −
1367503614 + 1) = 12� bits to store each value in this range (as opposed to
31 bits without this transformation).

(Patched) Dictionary (DICT and PDICT). Dict is suitable for data that
have only a small number of distinct values. It uses a dictionary of distinct
values. For compression and decompression purposes, dictionary is loaded into
the shared memory. Binary search is used during compression to lookup values,
then an index of value is used to encode. Decompression simply retrieves values
at given index from dictionary. Dict writes indexes using byte-aligned types,
for better compression a combination with other compression algorithm should
be used. For example, consider data frame {0, 500, 1500, 100, 100, 1500000,
100, 15000} using Dict only 1 byte is needed to store each value (even less if
combined with other compression algorithm) in comparison to pure Fl where
more than 2 bytes would have been used.

Run-Length-Encoding (RLE) and Patched Constant (PCONST). Rle
encodes values with a pair: value and run length, thus using two arrays to com-
press data. Consider following data frame {1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3}, then Rle
would create two arrays: values {1, 2, 3} and run length {5, 4, 3}. Pconst is a
specialized version of Rle where almost whole data frame consist of one value
with some exceptions. This may be reconstructed using: frame length, constant
value and PATCH arrays. For example, let us assume that a measurement is done
every five minutes with some exceptions, then delta is almost always constant
and equals 300, any other value will be stored as exception.

4 Cascaded Compression Planner

The goal of this part of the system is to find suitable cascaded compression plans
for the data gathered in the input buffer. It is composed of three parts:

– selection of suitable cascaded compression plans – mainly based on the specifics
of the algorithms and the characteristics of the data set (see rest of this
Section).

– evaluation of selected cascaded compression plans – based on the dynamic
statistics generator and compressed data size estimation (see Sect. 5).

– bi-objective plan selector – which uses decompression time estimation and
compressed data size to choose the final one (see Sect. 6).

Cascaded compression can significantly improve the compression ratio. How-
ever, searching for the most efficient compression method even for relatively
short plans composed for several compression steps (i.e. using 6 compositions
out of 10 algorithms with repetitions) may generate a very large search space (in
our example

∑6
i=1 10i = 1, 111, 110). Due to tight time constraints we proposed

a reduction of this problem by static planner and hints system.

Compression Planner for Time Series Database with GPU Support 47

Note that in fact, the situation is even more complicated, because of possi-
ble compression algorithms parametrization, e.g. (P)Fl and (P)For take as an
argument number of j bits used to encode each value, where 1 ≤ j ≤ 32. This
topic will be discussed with details in Sect. 5.

4.1 Reduction of Compression Plans Search Space: Static Planner

In the first static stage we determined acceptable transitions between compres-
sion algorithms which were divided into three categories: T – initial transforma-
tion, B – base compression, H – helper compression. The complete compression
schema is always composed of algorithms selected from these subsequent cate-
gories P̄ ⊆ P = {(t, b, h) : t ∈ T , b ∈ B, h ∈ H}, with the following purposes:

Transformation
Algorithms

Base
Compression
Algorithms

Helper
Algorithms

SCALE DELTA

/0 /0

PDICT

PFL

PFOR

PCONST

RLE

DICT

FL

FOR

[FL,FL,FL]

[FL F,0/, L]

[FL,FL]

[FL]0/,

F,0/[L]

]0/,0/[

[FOR,FOR]

[DICT,DICT]

[FL]

]0/[

Fig. 4. The composition graph of all available compression plans within the given
assumptions. Helper auxiliary algorithms are applied to additional arrays (from one to
three) returned by the base compression algorithms.

48 P. Przymus and K. Kaczmarski

1. T – Transformation algorithms (SCALE, DELTA). Improve properties
of data storage and prepare for better compression. All algorithms in this
section are optional but may be used together (if present must be applied in
the given order).

2. B – Base compression algorithms (PDICT, PFL, For, FL, DICT,
PFOR, RLE, PCONST). Only one algorithm may be selected as the base
algorithm. All algorithms in this section generate from one up to three result-
ing arrays. Some of the resulting arrays, may qualify for further compression
using Helper compression algorithms.

3. H – Helper compression algorithms (FOR, FL, DICT). The algorithms
used to compress selected arrays from the previous step. Each of the resulting
arrays can be compressed with only one algorithm. In order to minimize the
stages of decompression PATCH algorithms, which could create new arrays
for compression, are excluded. The base algorithm used may limit algorithms
in this section (Fig. 4).

Composition of all sensible paths between algorithms in these three categories
leaves only 76 suitable compression plans out of former one million. The longest
possible cascaded compression plan may be composed of six steps.

4.2 Manual Tuning of Compression Plans Search Space:
Hints System

Another reduction of possible compression plans generated in the first stage
can be done manually by a user speeding up further plan choosing. Number
and types of hints may vary in different situations. For example, in time series
systems timestamps are always sorted and if we consider separated compression
methods for timestamps and values we may find different and better plans for
them. A hint indicating sorted input may suggest using DELTA before base
algorithms. Additionally, for every metric additional features may be specified
or even specific compression algorithm may be enforced. Currently supported

Table 1. A sample set of hints for a time series compression planner.

Hints Meaning

Scale, (P)Fl, Rle, Delta,
(P)For, (P)Dict,
Pconst

Enforces a specific compression algorithm in the plan

DSORTED Specify whether the data is distinct and sorted. If true
eliminates following algorithms from compression
plan: Pconst, Rle, (P)Dict

TIMESTAMP Automatically added by system to timestamps. Sets
DSORTED to True and Scale to False

DATA Automatically added by the system to time series
values. If not specified otherwise it sets DSORTED
to False and Scale to False

Compression Planner for Time Series Database with GPU Support 49

hints are located in Table 1. After this step we select a subset P ′ = P ′(D) ⊆ P̄
of compression plans, where D – is data set to be compressed, and P ′(D) is a
reduced subset of P̄ after using hints elimination.

5 Dynamic Statistics Generator

5.1 Finding the Optimal Parametrization and Compression
Size Estimation

In this step, a plan with possibly maximal compression ratio is selected. In
order to perform this task the system uses statistics and estimations computed
dynamically from incoming data stream, for each metric and rolled time period
separately. Pre-computing them and storing aside is not an optimal solution due
to necessity of constant update and allocation of additional memory. Please note
that if a plan contains an initial transformation algorithm it must be applied
before calculating statistics because it influences data (Fig. 5).

SCALE DELTA

/0 /0

Fig. 5. Possible transformation algorithms and their composition.

Estimation results heavily depend on compression algorithms parameters.
In [13] the choice of optimal parameters was straightforward, because the used
algorithms supported only compression of value to byte-aligned size (which
reduced number of parameters) and did not allow exceptions in data (only one
set of parameters was correct). However, in compression algorithms and compres-
sion plans which use patching mechanism, optimal parameter selection is more
complex. Factors such as the number of generated exceptions and estimated
exception compression size should be taken into account. For example, the fol-
lowing data frame {1, 2, 3, 2, 32, 3, 3, 1, 64, 2, 1, 1} could be compressed using Pfl
algorithm using 2 bits, 5 bits or 6 bits fixed-length, generating two exceptions
(32, 64), one exception (64) or no exceptions respectively. In this case, for each
compression plan (selected in previous stages) a satisfactory set of parameters
should be selected in order to correctly estimate compressed data size.

Recall that P ′(D) is a reduced subset of P after using static planner and
hints elimination. Let P ′(D) � p = (t, b, h) be a cascaded compression plan,
where t ∈ T , b ∈ B, h ∈ H are transformation, base and helper algorithms,
respectively. A compression plan may be also written in simplified notation, i.e.(
(Scale, Delta), Pfl,(Fl,Fl)

)
.

Let us denote the data after applying the transformation algorithms by t(D)
where t ∈ T transforms data D. Now, let J(p,D) estimate compressed size of
data D after applying compression plan p, i.e.

J(p,D) := Jb(h, t(D)) (1)

50 P. Przymus and K. Kaczmarski

where P̄ � p = (t, b, h) is a compression plan from subset of compression plans
suitable for data D and Jb is estimation function for base algorithm b (see rest of
this Sections for details). A pseudo code of an optimal compression plan selection
is presented in listing SelectOptimalCompressionPlan. The rest of this section
presents functions Jb for b ∈ {(P)Fl,Rle,Delta, (P)For, (P)Dict,Pconst}.
This description is rather technical and not interested reader may skip to Sect. 6.

Procedure. SelectOptimalCompressionPlan(D)
Input: D
Result: Plan

1 P’ = P’(D) ; /* select reduced subset of P after using static planner

and hints elimination */

2 min size = size of data D;
3 p∗ = ∅;
4 for (t, b, h) = p in P ′(D) do
5 D’ = t(D);
6 if Jb(h,D

′) > min size then
7 min size = Jb(h,D

′);
8 p∗ = p;

9 end

10 end
11 return p∗, p∗ optimal parameters;

Table 2. Symbols used in the definition of parametrization optimization

Symbol Description

D Dataset

#D Dataset length

min(D) mind∈D d

tsub(m,D) Subtract m from each d ∈ D

Bdict Number of bits of type used to encode dictionary keys

Bbase Number of bits of base type (i.e. 8 bits, 16 bits, 32 bits, 64 bits)

bindex(D) The minimum number of bits required to store any number between 0
and #D

bminD) The minimum number of bits required to store any value d ∈ D

cin(j,D) Compressed data size (in bits) of patch index when using j bits Fl
coding to compress data D

cre(j,D) Compressed data size (in bits) of remainders values when using j bits
Fl coding to compress data D

Compression Planner for Time Series Database with GPU Support 51

5.2 Notation

Most of the notation is gathered in Table 2. For example, Bdict represents number
of bits of type that is used to encode dictionary keys and Bbase number of bits
of base type (i.e. 8 bits, 16 bits, 32 bits, 64 bits). Please note that in order to
simplify the following formulas notation we deliberately omitted the fact that
the resulting data should be aligned to a byte.

5.3 Optimal Parametrization and Compression Size
Estimation for (P)FL and (P)FOR

For algorithms (P)Fl and (P)For it is crucial to determine the optimal number
of bits needed to compress data D. To estimate size of data compressed with
(P)Fl and (P)For algorithms we use Bit histogram statistic. Let us define Bit
histogram as sbit(j,D) = #{d ∈ D : j bits are sufficient to write d} for 1 ≤ j ≤
32 l. It is implemented on GPU using double buffering (registers and shared
memory) parallel histogram scheme (Fig. 6).

Now, let bmin be the minimum number of bits required to store any value
d ∈ D and let bindex(D) be the minimum number of bits required to store any
number between 0 and #D, i.e.

bmin(D) := max
1≤j≤32

{j : sbit(j,D) 	= 0}, (2)

bindex(D) := �log2 #D�. (3)

Consider a compression plan p = (t,Fl, h) ∈ P ′, i.e. a plan, where base
compression algorithm b is set to Fl. Since Fl algorithm uses exactly bmin(D)
bits to compress each value in D, thus estimated compression size equals to

JFL(h,D) := bmin(D) · #D, (4)

PFL

PFOR

FL

FOR

[FL,FL]

[FL]0/,

F,0/[L]

]0/,0/[

Fig. 6. Pfor, For, Pfl and Fl base algorithms and a possible composition with
auxiliary algorithms.

(in case of compression plans with b = Fl, helper algorithms are set to h = ∅).
Clearly,

jFL := bmin(D) (5)

is the optimal parameter for Fl.

52 P. Przymus and K. Kaczmarski

Let now p = (t,For, h) ∈ P ′. The estimation differs from the previous case,
as now a transformation must be applied to data D. Let us define

tsub(m,D) := {di − m : di ∈ D}, (6)

which subtracts the value m from all values d ∈ D. To estimate the size of data
after applying a compression plan p = (t,For, h), we use

JFOR(h,D) := JFL(h, tsub(min(D),D)), (7)

i.e. the reference value here is min(D) (in case of compression plans with b =
For, helper algorithms are again set to h = ∅). Similarly to the previous case

bmin(tsub(min(D),D)) (8)

is the optimal parameter for For.
Before we consider the cases of patching algorithms in compression plans, we

need to define helper functions cin and cre:

cin(hin,D) :=

{
bindex(D) if hin = FL,

Bbase otherwise,
(9)

cre(j, hre,D) :=

{
(bmin(D) − j) if hre = FL,

Bbase otherwise.
(10)

The returned values depend on the value of (hin, hre) = h ∈ {Fl, ∅}2, which
indicates whether a helper compression algorithm is used or not. If hin = Fl,
then cin returns the number of bits needed to store each element in position array
and if hre = Fl, then cre returns the number of bits needed to store remainders
values (i.e. the original value−j bits). Otherwise, in both cases Bbase is returned,
i.e. number of bits needed to represent base type.

Also, let cout(j,D) be the number of outliers generated when using j bits as
base bit encoding, defined as:

cout(j,D) =
32∑

l=j+1

sbit(l,D). (11)

Next, let us define a function that returns the estimated compression size for
compression plan p = (t,Pfl, h), depending on number of bits j used to encode
the values:

gPFL(j, h,D) := #D · j + cout(j,D) · (cin(hi,D) + cre(j, hr,D)), (12)

where h = (hin, hre). The number of used bits j, determines the number of
outliers, as each value that needs more then j bits to be written, will be treated as
an outlier. Having said that, the returned value depends on the base compression
array size (i.e. #D · j), on the number of outliers generated (i.e. cout(j,D)) and
the way how they will be stored (i.e. cin(hi,D) + cre(j, hr,D)).

Compression Planner for Time Series Database with GPU Support 53

The function JPfl given by

JPFL(h,D) := min
1≤j≤32

gPFL(j, h,D) (13)

returns the estimated compression size for compression plan p = (t,Pfl, h).
Notice that the smaller j is, the smaller the size of the base compression array
becomes and the more outliers we have. This is why we need to minimize gPFL

over j. We call

jPFL := argmin JPFL(h,D) := min
1≤j≤32

{j : gPFL(j, h,D) = JPFL(h,D)} (14)

the optimal parameter for JPFL, helper algorithms h and data D.
Similarly, for a compression plan p = (t,Pfor, h) we define

JPFOR(h,D) := JPFL(h, tsub(min(D),D)), (15)

which returns the estimated compression size. Then

jPFOR := argmin JPFL(h, tsub(min(D),D)) (16)

is the optimal parameter for JPFOR, helper algorithms h and data D.

5.4 Optimal Parametrization and Compression Size
Estimation for (P)DICT

Pdict works on dictionary counter array and uses it to build an optimal dic-
tionary with exceptions (minimizing estimated compression size after applying
Pdict algorithm and using Fl helper algorithms). Therefore, Pdict generates
three output arrays: base, indexes and remainders while Dict generates only
two: base and indexes from which indexes may be further compressed with Fl.
For Pdict at least base and remainders arrays must be compressed using Fl
to improve compression ratio, compared to similar compression plan but with
Dict as base algorithm. Indexes array compression is optional.

To estimate size of data compressed with (P)Dict algorithm we use Dictio-
nary counter statistic. Let us define sdict(a,D) = #{i ∈ I : a = di ∈ D} as a
Dictionary counter. As a side effect this generates a dictionary for further usage
if needed. Implemented on GPU with sort and reduction operations. Mostly
constructed using thrust library.

Now, let dkeys be a set of unique values in D, i.e.

dkeys(D) := {a : sdict(a)(D) 	= 0, a ∈ D} (17)

and let dtop(k,D) ⊆ dkeys(D) be such that #dtop(k,D) = k and for a ∈
dtop(k,D), b /∈ dtop(k, topD) we have sdict(a) ≥ sdict(b) (if there are more sets
satisfying this condition, we pick one of them) (Fig. 7).

Let dhead returns size of dictionary header array (i.e. array that stores sorted
dkeys(D))

dhead(D) := Bdict · #dkeys(D). (18)

54 P. Przymus and K. Kaczmarski

PDICT

DICT

[FL,FL,FL]

[FL F,0/, L]

[FL]

]0/[

Fig. 7. Pdict and Dict base algorithms and possible composition with auxiliary algo-
rithms.

Let us define helper functions din, dba and dre:

dba(j, hba,D) :=

{
j if hba = FL,

Bdict otherwise,
(19)

din(hin,D) := cin(hin,D) (20)

dre(j, hre,D) :=

{
(bindex(#dkeys(D)) − j) if hre = FL,

Bdict otherwise.
(21)

The returned values depend on the value of h ∈ {Fl, ∅}3, which indicates
whether a helper compression algorithm is used or not. If hba = Fl, then dba
returns the number of bits needed to store each element in base compression
array position array, if hin = Fl returns the number of bits needed to store each
element in position (this is exactly the same as cin in the previous section) and
if hre = Fl, then dre returns the number of bits needed to store remainders’
values (i.e. the original value − j bits).

Consider a compression plan p = (t,Dict, h) ∈ P ′, i.e. a plan, where base
compression algorithm b is set toDict. Then estimated compression size equals to

JDICT (h,D) := dba(h,D) · #D + dhead(D), (22)

and includes size needed to store auxiliary dictionary table. Also in case of
compression plans with b = Dict, helper algorithms may appear so this is also
included.

The following formulas return estimated compression size for compression
plan p = (t,Pdict, h):

dout(i,D) :=
∑

a/∈dtop(2i,D)

sdict(a,D) (23)

GPdict(i, h,D) := dba(i, hba,D) · #D + dhead(D)

+ dout(i,D) ·
(
din(hin,D) + dre(i, hre,D)

)
(24)

JPdict(h,D) := min
1≤i≤log2Bdict

GPdict(i, h,D) (25)

where b = Pdict, h = (hb, hin, hre) and at least hba = Fl, hre = Fl (i.e.
any compression plan in this form (t,Pdict, (Fl, hin,Fl))). Without above

Compression Planner for Time Series Database with GPU Support 55

assumption Pdict will not improve compression ratio compared to Dict. We
call

jPDICT := argmin JPdict(h,D) := min
1≤i≤log2Bdict

{i : gDICT (i, h,D) = JPdict(h,D)}
(26)

the optimal parameter for JPdict, helper algorithms h and data D.

5.5 Optimal Parametrization and Compression Size
Estimation for RLE and PCONST

To estimate size of data compressed with Rle algorithm we use Run length
counter. Let us define srle(D) = (ar, av) where ar and av are run-length and
values arrays generated from data D, respectively. This is implemented on GPU
with reduction operation on key-value pairs.

Let us define a function that returns the estimated compression size for com-
pression plan p = (t, RLE, h):

JRle(h,D) := Bbase · #ar + Bbase · #av

where (ar, av) = srle(D). Now, additional helper algorithms may be used on ar
and av arrays, this however requires additional statistic generation step (Fig. 8).

PCONST

RLE

[FL,FL]

]0/,0/[

[FOR,FOR]

[DICT,DICT]

Fig. 8. Rle and Pconst base algorithms and possible composition with auxiliary
algorithms.

Lastly, the Pconst algorithm, which in nature reminds Rle however, achiev-
ing the objective somewhat differently. In this algorithm a dominant value
dtop(1,D) is selected from dataset D (and stored in header), all other values
are stored as outliers in PATCH arrays (index and remainders arrays). Fol-
lowing formula returns estimated compression size for compression plan p =
(t,Pconst, h):

JPCONST (h,D) := Bbase +
∑

a/∈dtop(1,D)

sdict(a,D) · (cin(hin, D) + cre(0, hre, D)).

(27)

JPCONST (h,D) := Bbase + dout(0, D) · sdict(a,D) · (cin(hin, D) + cre(0, hre, D)).

(28)

Note that, we do not divide values when creating remainders array, instead we
whole value (without dividing). This is because we only create PATCH arrays

56 P. Przymus and K. Kaczmarski

in this algorithm. Decompression involves creation of constant data set using
dominant value and applying PATCH array afterwards.2

6 Bi-objective Compression Plan Selection

The lightweight compression algorithms, are primarily designed for applications
favouring compression/decompression speed over compression ratio. Unfortu-
nately decompression of cascaded compression plan is usually more computa-
tionally demanding then decoding a simple compression scheme. We are facing
a dilemma, how much of the processing speed may be sacrificed to gain better
compression ratio.

Since there is no clear right answer, we propose optimization model which
is designed to support compression plan selection in the presence of trade-offs
between decompression speed and compression ratio.

Section 5 describes how to estimate compressed data size according to a pre-
dicted compression plan. In Sect. 6.2 we will construct a function which estimates
decompression speed of cascaded compression plan. Finally, in Sect. 6.3 we will
discuss how to combine those two objectives.

6.1 Notation

Table 3 contains a summary of the notation used in this section. Assume a
set of units U , a decompression plan set P and a dataset D. The goal is to
choose such a compression plan that gives good compression ratio and yet
allows fast decompression (i.e. compressed data transfer time + decompression
time ≥decompressed data transfer time).

As a result Cascaded Compression Planner returns set P ′ ⊂ P . Let us define:

ft(p′
i,D) = T (u, p′

i,D), (29)
fr(p′

i,D) = J(p′
i,D) (30)

where p′
i ∈ P ′, and u is device on which time measurements where done.

6.2 Decompression Time Estimation

Compression ratio and decompression time are the input parameters to bi-
objective compression optimization. Therefore, all candidate compression plans
need to have their decompression time estimated. In this, section we will discuss
the problem of estimation of decompression time for compression plans.

Estimation of decompression time for the candidate compression plan is cal-
culated based on the estimated decompression time for each algorithm contained
in in the plan. Recall that P ′(D) � p = (t, b, h) is a cascaded compression plan,

2 Note that this is a certain simplification, i.e. instead cre(0, hre, D̄) where D̄ is dataset
after removing all instances of dominant value.

Compression Planner for Time Series Database with GPU Support 57

Table 3. Symbols used in the definition of our optimisation model

Symbol Description

U = {u1, u2, . . . un} Set of computational units available to process data

D Dataset

pi ∈ P Decompression plan pi from set of decompression plans P

T (u, p,D) Estimated run time of the decompression plan p using device u
on the data D

ft Estimated maximal run time for decompression plan

fr Estimated compression ratio

fb Estimated decompression run time and compression ratio
bi-objective scalarization

where t ∈ T , b ∈ B, h ∈ H are transformation, base and helper algorithms,
respectively. One can treat t, h as vectors of operations to perform, where oper-
ations are lightweight compression algorithms or empty operation ∅.

Let us denote by T (p,D) the estimated decompression execution time for
compression plan p and data D:

T (p,D) :=
∑

i=0,1

mti(#D) + Tb(h,D). (31)

In the next paragraphs we describe the details of time estimation functions
for different lightweight compression algorithms. Not interested readers may skip
to the Sect. 6.3 not loosing the main contribution of our work.

Decompression Time Estimation Details. Slightly abusing notation, by
m∅(l) := 0 and m∅(j, l) := 0 we denote execution time of empty operation used
in transform and helper algorithms sections, respectively.

Next, let us define functions which return estimated decompression time for
following algorithms Scale, Delta, Fl, For and Dict. Depending on algo-
rithm type estimation functions require different arguments. We have mScale(l),
mDelta(l), mFl(j, l), mFor(j, l), mDict(d, l), respectively, where l stands for data
size, j is the bit length used in Fl and For algorithms, d is the size of used
dictionary.

Now, we define decompression estimation functions Tb for compression plan
p = (t, b, h) and data D. For b ∈ {Fl,For,Dict} we have:

TFl(h,D) := mFl(jFl,#D) (32)
TFor(h,D) := mFor(jFor,#D) (33)
TDict(h,D) := mDict(#dkeys(D),#D) + mhba

(bmin(dkeys(D)),#D), (34)

where jFL, jFOR are number of bit used for base encoding (see Eqs. 5 and 8),
dkeys and bmin are defined in Eqs. 17 and 2, respectively, hba is a helper algorithm
for DICT.

58 P. Przymus and K. Kaczmarski

For b ∈ {Pfl,Pfor} we need to define auxiliary functions first. Recall that
for b ∈ {Pfl,Pfor}, helper algorithms are of the following form h = (hin, hre)
and functions cin, cre which return the number of necessary bits for helper algo-
rithms are given by Eqs. 9 and 10. Let

mPFL(j, o, h,D) := mhin

(
cin(hin,D), o

)
+ mhre

(
cre(j, hre,D), o

)
, (35)

mPFOR(j, h,D) := mPFL(j, h,D) (36)

where j is the number of bits used for base encoding, o is the number of outliers
and D represents data set.

Similarly for b = Pdict, helper algorithms are of the following form h =
(hba, hin, hre) and functions dba, din, dre which return the number of necessary
bits for helper algorithms are given by Eqs. 19, 20 and 21. Let

mPDICT (j, o, h,D) := mhba

(
dba(j, hba,D), o

)

+ mhin

(
din(hin,D), o

)
+ mhre

(
dre(j, hre,D), o

)
(37)

where j is the number of bits used for base encoding, o is the number of outliers
and D represents data set.

Then for any plan where b ∈ {PFL,PFOR,PDICT} we define:

TPfl(h,D) := mFl(jPfl,#D) + mPFL(jPFL, cout(j,D), h,D), (38)
TPfor(h,D) := mFor(jPfor,#D) + mPFOR(jPFOR, cout(j,D), h,D), (39)

TPdict(h,D) := mDict(2jPdict ,#D) + mPDICT (jPDICT , dout(j,D), h,D) (40)

where jPFL, jPfor, jPdict are optimal parameters for PFL, PFOR and PDICT
(see Eqs. 14, 16 and 26), cout and dout return the number of a outliers (see Eqs. 11
and 23).

Similarly for PCONST, define

TPconst(h,D) := mCONST (#D) + mPFL(0, dout(0,D), h,D). (41)

Decompression time of RLE depends only on data length [13], let function
mRle(l) return estimated decompression time for RLE:

TRle(h,D) := mRLE(D) + decompression time of helpers algorithms used.
(42)

6.3 Bi-objective Compression Planner

We will use a priori articulation of preference approach which is often applied
to multi-objective optimization problems. It may be realized as the scalarization
of objectives, i.e., all objective functions are combined to form a single function.
In this work we will use weighted product method, where weights express user
preference [16]. Let us define:

fb(u, p,D) = fr(p,D)wr · ft(u, p,D)wt

Compression Planner for Time Series Database with GPU Support 59

where wt and wc are weights which reflect how important cost and time is (the
bigger the weight the more important the feature). It is worth to mention that
a special case with wt = wr = 1 (i.e., without any preferences) is equivalent to
Nash arbitration method (or objective product method) [16].

We can also extend this to handle a set of devices U . This allows us to consider
compression plans taking into account all devices on which the data may be
decompressed. Let us define function fm: fm(p,D) = (maxuk∈U tt(uk, p,D))wt +
fr(p,D)wr this function optimizes for the slowest device for each plan.

7 Preliminary Runtime Results

In this section we discuss effectiveness of the dynamic compression planner in
the context of the resulting compression ratio. To fully evaluate the proposed
compression framework, we still need to perform more experiments regarding
the context of decompression speed for many other data sets and devices. The
detailed processing time analysis including threads instruction throughput and
effectively achieved memory bandwidth needs a lot of runtime trials and will be
addressed in the next paper.

We compared effectiveness of a dynamic compression planner and a single
static plan within the same CF (Column Family – portion of data rolled in a
database) by running the prototype system on samples from a set of network
servers monitoring. The data included memory usage, the number of exceptions
reported, services occupancy time or CPU load. Data covered a sample of 20 days
of constant monitoring and contained about 91 K data points in a few time series
being a sample from a telecommunication monitoring system.

We used the following equipment: Nvidia R© Tesla C2070 (CC 2.0) with 2687 MB;
2 x Six-Core processor AMD R© OpteronTM with 31 GB RAM, Intel R© RAID Con-
troller RS2BL040 set in RAID 5, 4 drives Seagate R© Constellation ES ST2000NM0011

2000 GB, Linux kernel 2.6.38–11 with the CUDA driver version 5.0.

7.1 Evaluation of the Compression Planner

The evaluation was divided into two parts. The first measured efficiency of the
dynamic planner and was intended to prove the basic contribution of this work.
The second checked efficiency of GPU based statistics evaluation when compared
to CPU and proved contribution concerning time efficiency.

7.2 Dynamic Compression Planner Evaluation

Figure 9 shows compression ratio (original size/compressed size) using several
static plans (one compression plan for the whole column family) and a dynamic
plan (dynamically chosen compression plan for different metrics, tags and time
ranges). In case of timestamps, five static plans were generated using Delta
algorithm combined with five base compression methods (and helper compression
algorithms if suitable). Similarly, for data values five plans where selected except

60 P. Przymus and K. Kaczmarski

Fig. 9. Efficiency of the prototype dynamic compression system working on GPU for
sample time series. Compression ratio (original size/compressed size) for static (*SP)
and dynamic (*DP) plans. I stands for indices and V for values.

Scale was used instead of Delta. We may observe, that for timestamp arrays,
compression ratio of a dynamic compression plan was equivalent to best static
compression plan. This situation appeared because all time series were evenly
sampled in this case. Therefore one static plan for all metrics generated the same
results as a dynamic plan, selected for each time series separately. Note that in
real systems, some measurements may be event-driven and thus dynamic plan
could generate better results.

For data values, a dynamic compression plan almost doubles compression
ratio of the best static compression plan which means that dynamic tuning
was much better than selection of one static plan for the whole buffered column
family. Obviously, this is heavily data dependant, but as a general rule a dynamic
compression plan will never generate a compression plan worse than the best
static plan (as it always minimizes locally). Additionally hints system may be
used to enforce a static compression plan for cases when a dynamically generated
compression plan does not produce satisfactory profits.

Fig. 10. Statistics calculation speed-up on sample data with 8 millions values compared
to single threaded GPU. This includes GPU memory transfer (higher is better).

Compression Planner for Time Series Database with GPU Support 61

7.3 Evaluation of Statistics Calculations and Bandwidth
of Compression Methods on GPU

In Fig. 10 on the right GPU statistic generator is compared to similar CPU
version (implemented as a single thread). Generated statistics are then used to
support the compression planner selection. A significant speed-up of factors from
10 to 70 was gained thus usage of GPU platform in statistics calculation step is
justified.

Furthermore, GPU platform allows to archive high compression bandwidth
for lightweight compression schemes (see Table 4 and results from [13]). We con-
clude that GPU may be used just as a kind of compression coprocessor even if
there are no other computations done on a GPU side.

Table 4. Achieved bandwidth of pure compression methods (no IO).

Algorithm Delta Scale (P)Dict (P)For (P)Fl Rle Pconst

GB/s 28.875 41.134 6.924 9.124 9.375 5.005 2.147

8 Conclusions and Future Research

Monitoring of complex computer infrastructure is already an important indus-
trial problem. Time series database system try to address many of the prob-
lems which may appear, like: scalability, robustness, safety and availability. Our
research focuses on a time series database system supported by GPU coproces-
sors which may be used for many purposes, from data compression to analysis
and aggregation.

In this paper, touching lightweight compression methods we successfully
extended results from [13,19]. We not only designed and implemented new
patched compression algorithms on GPU (i.e. Patched Dict, Patched Const.
and Patched Fixed Length) but also presented a dynamic compression planner.
Our novel prototype system was adapted to time series compression in a NoSQL
database. The compression method is composed of several nested algorithms.

Furthermore our compression planner uses dynamic data statistics calculated
on the fly using a GPU device for the best possible lightweight cascaded com-
pression plan selection. We believe that the resulting compression ratios and
algorithms bandwidth (please refer to Table 4) combined with ultra fast decom-
pression [13,19] on GPU are especially attractive for time series databases.

Our future work will concentrate on query optimization in hybrid CPU/GPU
environment, query execution on partially compressed data and extending
dynamic compression planner by introducing additional costs factors (i.e. decom-
pression execution time [13] or potential of query execution on compressed data)
leading to a full-flagged time series database system.

62 P. Przymus and K. Kaczmarski

References

1. Apache HBase (2013). http://hbase.apache.org
2. OpenTSDB - A Distributed, Scalable Monitoring System (2013). http://opentsdb.

net/
3. ParStream - website (2013). https://www.parstream.com
4. TempoDB - Hosted time series database service (2013). https://tempo-db.com/
5. Andrzejewski, W., Wrembel, R.: GPU-WAH: applying GPUs to compressing

bitmap indexes with word aligned hybrid. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 315–329.
Springer, Heidelberg (2010)

6. Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: hyper-pipelining query exe-
cution. In: CIDR, pp. 225–237 (2005)

7. Breß, S., Schallehn, E., Geist, I.: Towards Optimization of Hybrid CPU/GPU
Query Plans in Database Systems. In: New Trends in Databases and Information
Systems, pp. 27–35. Springer, Heidelberg (2013)

8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: OSDI’06: Seventh Symposium on Operating System Design
and Implementation, Seattle, WA, November, pp. 205–218 (2006)

9. Chatfield, C.: The Analysis of Time Series: An Introduction, 6th edn. CRC Press,
Florida (2004)

10. Cloudkick. 4 months with cassandra, a love story, March 2010. https://www.
cloudkick.com/blog/2010/mar/02/4 months with cassandra/

11. Dean, J., Ghemawat, S.: Mapreduce simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2004)

12. Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference
for compressing inverted lists. Technical report, DERI - Digital Enterprise Research
Institute, December 2010

13. Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proc.
VLDB Endowment 3(1–2), 670–680 (2010)

14. Fink, E., Gandhi, H.S.: Compression of time series by extracting major extrema.
J. Exp. Theor. Artif. Intell. 23(2), 255–270 (2011)

15. Lees, M., Ellen, R., Steffens, M., Brodie, P., Mareels, I., Evans, R.: Information
infrastructures for utilities management in the brewing industry. In: Herrero, P.,
Panetto, H., Meersman, R., Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567,
pp. 73–77. Springer, Heidelberg (2012)

16. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Struct. Mult. Optim. 26(6), 369–395 (2004)

17. OpenTSDB. Whats opentsdb (2010–2012). http://opentsdb.net/
18. Papadimitriou, C.H., Yannakakis, M.: Multiobjective query optimization. In: Pro-

ceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pp. 52–59. ACM (2001)

19. Przymus, P., Kaczmarski, K.: Improving efficiency of data intensive applications
on GPU using lightweight compression. In: Herrero, P., Panetto, H., Meersman, R.,
Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567, pp. 3–12. Springer, Heidelberg
(2012)

20. Przymus, P., Kaczmarski, K.: Dynamic compression strategy for time series data-
base using GPU. In: New Trends in Databases and Information Systems. 17th
East-European Conference on Advances in Databases and Information Systems,
1–4 September 2013 - Genoa, Italy (2013)

http://hbase.apache.org
http://opentsdb.net/
http://opentsdb.net/
https://www.parstream.com
https://tempo-db.com/
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
http://opentsdb.net/

Compression Planner for Time Series Database with GPU Support 63

21. Przymus, P., Kaczmarski, K.: Time series queries processing with gpu support. In:
New Trends in Databases and Information Systems. 17th East-European Confer-
ence on Advances in Databases and Information Systems, 1–4 September 2013 -
Genoa, Italy (2013)

22. Przymus, P., Kaczmarski, K., Stencel, K.: A bi-objective optimization framework
for heterogeneous CPU/GPU query plans. In: CS&P 2013 Concurrency, Speci-
fication and Programming. Proceedings of the 22nd International Workshop on
Concurrency, Specification and Programming, 25–27 September 2013 - Warsaw,
Poland (2013)

23. Przymus, P., Rykaczewski, K., Wísniewski, R.: Application of wavelets and Kernel
methods to detection and extraction of behaviours of freshwater mussels. In: Kim,
T., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K., Arnett, K.P. (eds.)
FGIT 2011. LNCS, vol. 7105, pp. 43–54. Springer, Heidelberg (2011)

24. Wu, L., Storus, M., Cross, D.: Cs315a: final project cuda wuda shuda: Cuda com-
pression project (2009)

25. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with
optimized document ordering. In: Proceedings of the 18th International Conference
on World Wide Web, pp. 401–410. ACM (2009)

26. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: ICDE’06. Proceedings of the 22nd International Conference on Data
Engineering, pp. 59–59. IEEE (2006)

http://www.springer.com/978-3-662-45760-3

	Compression Planner for Time Series Database with GPU Support
	1 Introduction
	1.1 Motivation and Related Work

	2 Time Series Database System with Compressed Storage
	2.1 Time Series Data Model
	2.2 Data Insertion
	2.3 Data Retrieval
	2.4 Searching for Optimal Compression

	3 Lightweight Compression Algorithms
	4 Cascaded Compression Planner
	4.1 Reduction of Compression Plans Search Space: Static Planner
	4.2 Manual Tuning of Compression Plans Search Space: Hints System

	5 Dynamic Statistics Generator
	5.1 Finding the Optimal Parametrization and Compression Size Estimation
	5.2 Notation
	5.3 Optimal Parametrization and Compression Size Estimation for (P)FL and (P)FOR
	5.4 Optimal Parametrization and Compression Size Estimation for (P)DICT
	5.5 Optimal Parametrization and Compression Size Estimation for RLE and PCONST

	6 Bi-objective Compression Plan Selection
	6.1 Notation
	6.2 Decompression Time Estimation
	6.3 Bi-objective Compression Planner

	7 Preliminary Runtime Results
	7.1 Evaluation of the Compression Planner
	7.2 Dynamic Compression Planner Evaluation
	7.3 Evaluation of Statistics Calculations and Bandwidth of Compression Methods on GPU

	8 Conclusions and Future Research
	References

