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Abstract. Traversing huge graphs is a crucial part of many real-world problems,
including graph databases. We show how to apply Fixed Length lightweight com-
pression method for traversing graphs stored in the GPU global memory. This
approach allows for a significant saving of memory space, improves data align-
ment, cache utilization and, in many cases, also processing speed. We tested our
solution against the state-of-the-art implementation of BFS for GPU and obtained
very promising results.
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1 Introduction

Graph algorithms are a foundation of many fields of computer science, including graph
databases. Since the graphs appearing in applications tend to be bigger and bigger, both
science and industry conduct research to find some more efficient and powerful methods
allowing to process them.

Recently, implementations of graph algorithms for the Graphic Processing Units
(GPUs) have received a considerable attention. A prominent speed-up has been ex-
pected due to a massive parallelism offered by the GPU technology. Although the
parallel threads programming is now much simplified in this programming model,
most of the algorithms (except the ones for embarrassingly parallel problems) need
to be redesigned and rewritten. For this reason, new GPU implementations of already
known graph algorithms are extensively studied. An example of such an algorithm is
the Breadth-first search (BFS), being a building block of many more complicated algo-
rithms and data mining techniques. There have been many studies addressing the im-
plementation of this algorithm on a GPU, followed by a novel work of Merrill, Garland
and Grimshaw [[11]], which outperformed all previous achievements. As the GPU cards
often have severe memory limitations, Merril et al. also cover the usage of multiple
GPU cards, which allows to scale the problem, when the size of the data increases.

In this work we propose an extension and improvement to the work by Merrill
et al. [11], by combining BFS with a lightweight compression algorithm. As a result, it
is possible to decrease an overall communication cost between the CPU and the GPU
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and fit significantly larger graphs in a single GPU. Surprisingly, for large graphs it is
also possible to improve the processing time of the algorithm on a single GPU device.

1.1 Preliminaries

In this paper we consider directed graphs G = (V, E), being a pair of a vertex set V and a
directed edge (arc) set E C V x V. Neither multiple edges of loops are allowed. We use
a well-known compressed sparse row (CSR) format to represent an adjacency matrix of
our graph. The vertices are indexed with successive non-negative integers. We store a
graph G = (V, E) using two arrays C and R. The array C is a concatenation of adjacency
list of successive vertices. Therefore its length is exactly |A|. The array R has |V|+ 1
elements. The value of R[i] (for i € {0,1,..,|V| — 1}) points to the index in C of the
first element of adjacency list of i. In R[|V|] we keep the total number of edges |E|. See
Figure T|for an example. Let C, be a subarray (segment) of C containing nodes pointed
by edges of vertex v, i.e. an adjacency list of v. Clearly C, = C[R[v]],...,C[R[v+ 1] —1].

Iter.| Vertex | Edge

frontier| frontier

C:]25\8\134\4\1\1\8\3 6 7\ 1 (0} (2.5]
0123456789101112 2 {2,5} {1’1’3,4}
R. [012[3[6[7[7[8[9[10]13] 3 {134} {48}
01234567 8 9 4 {8} | {3.6,7}
511{6,7} | {1,8}

6 0

Fig. 1: A graph, its CSR representation and vertex- and edge-frontiers in iterations of BFS started
with node 0.

BFS (Breadth-first search), one of the best known graph algorithms, starts from a
given vertex v and traverses the set of all vertices in a breadth-first manner. Every vertex
is labelled with its distance from v (measured in the number of edges). Sometimes we
also store the immediate predecessor of each vertex on the shortest path from v. This
allows us to re-create all such paths. The complexity of a sequential BFS is O(|V |+ |E]).

Although BFS is simple and not very interesting on itself, it is a crucial part of many
more complicated and useful graph algorithms, e.g. detecting (strongly) connected com-
ponents, detecting cycles, checking for bipartiteness or maximum flow algorithms. We
refer the reader to a classical book by Cormen et al. [3]] for more information about
possible uses of BFS.

In a parallel version of BFS we also start with some initial vertex, forming a one-
element set Vi, called a vertex-frontier. Then, in every iteration i, the current vertex
frontier V; is expanded, forming a multiset V/, | of neighbours of vertices from vertex
frontier. This multiset is called an edge-frontier. To obtain the next vertex frontier V; 1,
we need to remove from V/ | all duplicates and all vertices that have already been
visited. For an example, consult Figure



1.2 Short History of BFS Implementations for the GPU

In 2006 NVIDIA published the first version of the CUDA platform which enabled pro-
grammers to write arbitrary programs executed by vectorised parallel threads with sim-
plified random memory access. Simplified programming paradigm and spectacular ben-
efits in many applications have led CUDA to become a de-facto standard in the general
purpose graphic processor unit programming (GPGPU). In this paper we assume that a
reader is familiar with general purpose GPU computing problems and NVIDIA CUDA
architecture. Due to the strong page limit we shall not describe notions like SIMD com-
puting, threads, warps, blocks and various memory hierarchy levels. We kindly suggest
reading the documentations provided by NVIDIA [12!13]], if necessary.

Breadth-first search, being a building block of many graph algorithms and data min-
ing techniques, appeared to be an important task for GPU devices. In 2007 Harish and
Narayanan [[7] presented the first CUDA implementation. Their approach processes a
graph in levels, starting from a given source vertex. In each iteration all vertices which
have to be visited in the next step are marked by parallel threads. No global queue of
vertices is created due to possible conflicts in memory access by parallel threads and
necessity of duplicates removal. This becomes a problem for graphs of high average de-
gree, where the same vertex may be pointed to by many edges. Parallel post-processing
and removal of duplicates in the vertex frontier may become a complex and expensive
task itself. An obvious strategy is then not to create the vertex queue at all and visit
all vertices in each iteration, checking if each vertex has to be visited or not. Unfortu-
nately this solution leads to quadratic processing time (compared to O(|V|+ |E|) for
the sequential algorithm).

Deng et al. [S)] achieved the same quadratic complexity for sparse graphs repre-
sented by adjacency matrices. In each iteration a frontier propagation is computed by
multiplication of a matrix and a vertex vector. Since the entire graph traversal will re-
quire O(|V|) multiplications in the worst case and each multiplication has a complexity
of O(|E|), we again get at least quadratic processing time.

The only way to achieve an efficiency comparable to a sequential algorithm is to
organize a set of vertices to be visited in the next step optimally, without duplicates.
Luo, Wong and Hwu [9] were the first ones to present such a solution for the GPU.
Their hierarchical queue structure produces a vertex frontier array processing incoming
vertices. It is first initiated in the shared memory, using the warp-level threads cooper-
ation. Then, on the block-level, the next step of a queue processing is performed. The
final shape of the array is formed in the global memory by a proper copying of block
level frontiers. It is worth to mention that an efficient implementation is guaranteed by
memory coalesced writes and reads.

In 2011 Hong et al. [8] noticed that performance may be significantly improved,
if the edge frontier array can be processed by warps instead of single threads. They
described a warp-based task allocation model and extended it further to virtual warps
(smaller that normal 32-threads warps), which allowed for better utilization of threads
in multiprocessors. In this approach each thread in a virtual warp processes the same
vertex and then it processes a single edge coming out of this vertex. Although authors
were successful in general description of a better task allocation method, their BFS im-



plementation is based on the Harish and Narayanan solution and achieves only quadratic
performance. Thus is cannot be considered to be the latest state of the art in this field.
In 2011 Merrill, Garland and Grimshaw [11]] presented a new implementation of
the BFS, which significantly outperformed all previous works. Since this solution is a
starting point for our research, a more detailed description follows in the next section.

1.3 Highly Optimized BFS Implementation

The most important part of various BFS implementations is the generation of a vertex
frontier for iteration i from a vertex-frontier in iteration i — 1 (and possibly some other
data). Merrill et al. [11]] describe and evaluate a few possible strategies.

Expand-contract. In this approach a single kernel takes care of the current vertex-
frontier, expands it into an edge-frontier and then contracts it into the next vertex-
frontier. First, threads try to detect duplicates within the warp using some heuristic
methods. Then the majority of duplicates and already visited vertices is discarded on
the block level. Finally, the whole block is assigned to gather the neighbours from un-
expanded adjacency lists of the vertices from the vertex-frontier. This assignment is
fine-grained and uses a prefix-sum operation.

Contract-expand. This approach is very similar to the previous one. Now a single kernel
first contracts a given edge-frontier by deleting already visited vertices and identifying
most of the duplicates. Then it expands this vertex frontier to an edge frontier, again
using prefix-sum operation.

Two-phase. This approach provides separate kernels for the expansion and contraction
steps. The expansion kernel uses a clever synchronization strategy, using block-level
and warp-level synchronization. Then the duplicates and previously visited vertices are
deleted by the contraction kernel, thus producing the next vertex frontier.

The authors finally decide to use the hybrid strategy. They perform the rwo-phase
approach for large iterations and the contract-expand approach in small iterations (i.e.
when the edge frontier is small).

It is important to mention that using refined strategies for transforming a vertex-
frontier to an edge-frontier and then again to a next vertex-frontier, requires a random
access to arrays in which we store the graph. This was not the case in previous, less
complicated implementations.

Merrill et al. [11] test their solution against the previous solutions for the GPU by
Hong et al. [8] and Luo et al. [9] and also some CPU implementations (both serial
and parallel). They were able to obtain a significant improvement in all test cases. The
performance they achieve reaches 3.3 - 10° traversed edges per second.

1.4 Motivation

Graphs that need to be processed in real-life applications tend to be really huge. For
example, Facebook has about 1.23 - 10° monthly active users (1.26 - 10° total). The



number of friendships (i.e. edges in the social graph) is 125 - 10°. The average degrees
may vary depending on the region. For example there are 128 - 10° Facebook users in
the US and an average number of Facebook friends for them is 350. For a detailed
analysis of the Facebook social graph, we refer the reader to Ugander et al. [18].

This shows that the time needed to process an input graph is not the only constraint
— we also need to be able to store it in the memory (in our case, memory of the GPU
device) somehow. A common solution here is to distribute the algorithm to multiple
GPUs, each of which keeps a part of the graph.

In this paper we show how to compress the graph, so that we can store more data in
amemory of a single GPU device. This, combined with the distribution, would allow us
to process some extremely large graphs. Our compression proposal has the following
properties:

— a smooth integration with existing algorithms,

— a minimal instruction overhead,

— a decreased overall memory footprint (so that bigger graphs can be stored on single
GPU device),

— a localized warp-centric and thread-centric decompression, minimizing the number
of instructions necessary for the decompression.

Our experience from other applications of a compression shows that in many data-
intensive algorithms, the decompression procedure may increase instruction through-
put, since threads often have to wait for memory reads to complete. We expect that our
approach will improve graph processing algorithms in graph databases.

1.5 Lightweight Compression Methods

The GPU compression topic was raised in several studies. A considerable has been paid
to the so-called lightweight compression algorithms, which are primarily intended for
real-time applications and favor compression/decompression speed over the compres-
sion ratio. Their main purpose is to increase a data throughput by a reduction of a data
volume

Interesting results on the GPU compression were presented by Andrzejewski et al. [1]],
where Word Aligned Hybrid compression algorithm for the GPU was presented. Wu et al.
[[19] discussed an implementation of Lempel-Ziv 77 (LZ77) algorithm on CUDA frame-
work and showed that the performance of this algorithm was poor on the GPU processor
when compared to the classical CPU implementation, due to many branches and threads
divergence problem. Interesting results in the area of lossless compression on the GPU
were presented by Fang et al. [6]. Using a compression planner it was possible to
achieve a significant improvement in overall query processing on the GPU by reducing
a data transfer time from RAM to the global device’s memory space.

In our previous work we studied possibilities of composing several lightweight com-
pression methods to improve the compression ratio. We have shown that finding the
optimal compression plan by a dynamic data analysis may significantly improve results
without sacrificing the decompression speed [[15]].

The Fixed Length (FL) compression method works by removing leading zeros at
the most significant bits and thus truncating each value to a fixed length, which is the
same for all input elements. The main advantage of the FL algorithm (and its variants) is



the fact that both compression and decompression are highly effective on the GPU, be-
cause these routines contain minimal number of branching-conditions, which decrease
parallelism of SIMD operations. For the best efficiency, dedicated compression and de-
compression routines are prepared for every bit encoding length with unrolled loops
and using only shift and mask operations. In our case this method may be used for
both arrays R and C. Additionally for C, the number of bits may be different for C, for
each vertex v. This may lead to a better compression ratio, but also a more complicated
decompression.

Another method, which may be used, is the Frame Of Reference (FOR). It works
in a similar way to FL, but before a compression it transforms each value into an offset
from the reference value (for example the smallest value in the set) in a compression
block. The reference value is then stored in the compression header. In this situation,
we need exactly |log,(max —min)]| + 1 bits to encode each value in the frame and
|log, min| + 1 to store the reference value. The best efficiency can be reached if the
ordering of vertices reflects the structure of a graph in such a way that the vertices that
are close to each other (in the graph) have relatively close indexes. This can be achieved
for example by clustering the graph and ordering the vertices of each cluster separately.

Let us now analyse the applicability of FOR compression of C and R arrays (hav-
ing in mind that we require a random access to its elements). As explained above, this
method divides data into segments named frames. All values in one frame are com-
pressed together but it is possible to decompress any of them by reading a header (the
reference value) and a compressed value itself. Reading two values (instead of one) in
each read operation is a waste of bandwidth and processing time.

The Differential Representation approach stores only the differences between suc-
cessive data points. Since we need a random access to all elements, a decompression
of a value would require to scan the whole array, which takes a linear time. Also the
Dictionary method (in all variants including the Tunstall encoding) is not suitable for
CSR graph representation, since there are too many different values to encode. Creating
a dictionary of them would make no sense. The Run length encoding stores an array
of repeating values as an array of pairs: value and run length (the number of successive
appearances of an element). This method is not suitable for us, since we do not expect
values to repeat often on consecutive positions in the arrays R (they would correspond
to subsequent vertices with no out-edges) or C (they would correspond to subsequent
vertices of out-degree 1, having a common neighbour).

All integer encoding methods of variable length based on prefix-codes (e.g. Elias,
Shannon-Fano, Huffman, Golomb — consult a comprehensive book by Salomon [17]]
for more information) do not support a random access and thus are not applicable in
case of graph algorithms.

The main drawback of many lightweight compression schemes is that they are
prone to outliers in the data frame. For example, consider the following data frame
{1,2,3,5,7,128} and the FL compression scheme. One could use a 3-bit fixed-length
compression to encode almost all values in the frame, but due to the outlier (the value
128) we have to use 7-bit fixed-length compression. A solution of this problem is to use
the so-called Patched Lightweight Compression. An example of this approach has
been proposed by Zukowski et al. [21]] as a modification of three lightweight compres-



sion algorithms. Their main idea is to store outliers as exceptions in an additional array.
However, variable number of exceptions lead to many branches in code and decrease
efficiency of parallel threads. Various solutions have been proposed to cope with this
problem, such as reducing the frame size [21], avoiding too many exceptions [4/20] or
separating decoding and patching processes [14116].

2 Compression of the CSR Graph Representation

To choose a compression method which is suitable for graph processing using a GPU
device, we need to analyse the behavior of the BFS algorithm in the aspect of memory
access and the graph representation in memory.

To our best knowledge, in parallel implementations of BES there are two possi-
bilities of parallel threads behavior, when reading the edges to be visited in the next
algorithm iteration:

- A single thread reads a vertex to be visited and then performs a series of sequential
read operations in the array C,, looking for the corresponding edges.

- A group of threads (a warp or a block) reads the same vertex to be visited and then,
in parallel, reads all its edges from the array C,. If the number of edges is bigger than
the number of threads, then this process iterates until all edges are visited. Similarly, if
number of edges is smaller, then some threads may be idle.

In both options, both arrays C and R are accessed randomly, but in the second solu-
tion bigger fragments of array C can be read together.

In the case of our example in Figure[I] the first approach would lead to one thread
reading vertex number O and then its neighbours {2,5} followed by two threads pro-
cessing two vertices 2 and 5 in parallel and producing two edge frontiers {1,3,4} and
{1}, respectively. The number of read operations is three in the case of the the first
thread and only one for the second thread.

The second approach would use a group of threads (most effectively a warp) for
reading vertex O from the vertex frontier. Next two threads would concurrently read
two edges from the Cy array and then produce one edge frontier containing {2,5}. In
the second iteration two groups (warps) would access two distant places in array C read-
ing corresponding edge frontiers. Each thread in a group would read its corresponding
value: 1,3 and 4 in the first group and 1 in the second group. Two resulting frontiers
will be created simultaneously in one step. If a coalesced memory access is possible,
then the process would end in two memory read operations. This fact of a better threads
utilization in the case of a warp-level edge-frontier access was already noted by other
authors [9/11]] and is related to the parallel processing model of the GPU device.

Considering the memory space needed to store the graph, we observe that the array
R is sorted and stores indices of the much bigger array of edges C. Each segment C,
can also be sorted. Both arrays contain only non-negative integers. We also need to note
that R contains much bigger values (its last element is the sum of degrees of all vertices,
which is equal to the total number of edges).

The threads behaviour and memory representation leads to important conclusions:
1. the array R after compression must allow for a random access to any of its elements;



2. the same holds for the array C, but this array may be divided into blocks Cy;
3. a group of threads may cooperate in decompression of edge frontiers read from C.

Note that BFS is a data intensive algorithm. It performs very few computations and
can significantly slow down if a decompression method is too expensive or creates some
unwanted threads divergence by branching.

The above statements focus our attention on lightweight compression methods,
which are local, do not use patching mechanisms and allow a value to be decompressed
solely upon information from the data read in a constant time. According to the anal-
ysis from Section [I.5] the FL compression method seems to be the most flexible and
promising. Therefore we chose to use it in our approach.

2.1 Fixed-length compression of large in-memory arrays

In this section we discuss in detail the consequences of choosing the FL compression
scheme for a large array, which require a random access.

Memory organization consequences of the FL. compression method. Consider an
array compressed with the FL algorithm, with each value written on ¢ bits. We store
them in an array of k-element memory cells (in most cases we shall use &k = 32, as it
is best supported by current GPU devices). Observe that some values will be stored in
two consecutive memory cells. In those cases, to retrieve the value, we need to read two
cells, which significantly increases the cost of the read operation. Therefore we want
to keep the number of such values as small as possible. In a perfect situation, when /¢
divides k, there are no values spanning over multiple cells.

Consider a block A of our array, whose length is equal to x- ¢ = y - k, which is the
least common multiple of k and ¢ (as the whole array consists of such blocks and some
remainder, which has constant length and therefore can be omitted in our analysis). The
number of values spanning over two consecutive cells is exactly y— 1 = m —1 (%).

From this we can see that there are two ways to minimize the number of read oper-
ations — by making ¢ small or by making gcd(k, ¢) large.

Expected Cost of Random Array Access Th above statements lead to an important
conclusion that the additional cost of memory operations (when compared to an array
without any compression) depends on the values of £ and k. Suppose we have an array
of X values, consisting of blocks of size m (as mentioned before, we do not care

about some remainder, as its length is constant). Therefore, from (x), the total number

of values which occupy two consecutive cells is X - (L — 1) =X- w Let

gcd(k,0)
o:= #%M. Now X is the number of values spanning over two consecutive cells. If

we choose a random value (with a uniform probability), we get a value in two cells with
probability %(—X = o and a value in just one cell with probability 1}”{ =1—«. Suppose

we want to read m random values, chosen with uniform probability. The expected value




of read operations is:

EX(number of read operations when reading m values) =
m - EX(number of read operations when reading one value) =
£—ged(k,£)

=m-(1-(1—-a)+2-a)=m-(1+0)=m-(1+ . ).

This is compared with m read operations needed to retrieve m values from a non-
compressed array. Obviously if ¢ divides k then additional cost 0.

Moreover, observe that so far we only considered the simplest case when each value
was immediately followed by the next one and we had no unused bits. However, this
may not be an optimal approach. Consider for example cells of size k = 32 bits and
¢ = 5. We may consider storing 6 values in a single cell and leaving two remaining bits
unused (so the next value starts in the next cell). With this approach we increase the
size of the data (and thus reduce the compression ratio), but we never have to read more
than one cell to retrieve a single value, which improves the efficiency of processing (we
need m read operations to read m values).

Actually, in our experiment we use such a modification. Instead of storing each
value on ¢ = max{|log,z| + 1: zis a value to be stored} bits, we chose some ¢' > ¢,
which allows us to reduce the number of values spanning over two cells. Table[IT|shows
the optimal values ¢ and chosen values ¢ for benchmark graph. If £/ = 21, then we
just stored three values in two 32-bit memory cells and left one last bit unused. For
the graphs with £ = ¢ = 16, we just stored two values in a single 32-bit memory cell.
Observe that a small loss in the compression ratio is justified by fewer read operations.

3 Benchmark Graphs and Results of Experiments

In order to confirm the effectiveness of our approach we test it against the fastest known
BFS implementation, which was already discussed in Section [I.3] Unfortunately most
of the data sets mentioned by Merrill ef al. were not available when we performed the
tests. We only managed to download several Citeseer and DBLP graphs. However, we
were able to use the same graph generator: R-MAT (see Chakrabarti et al. [2]] for de-
tails). Such graphs are realistic and reflect specific properties of large graphs appearing
in real-world applications.

We run the experiments on graphs having from 65.5-10° to 2- 10° vertices and up
to 300 - 10° edges. Tablelists the parameters of benchmark graphs.

The code of the solution by Merrill et al. [11] is available for public as a part of the
back40computing (b40c) project [LO]. Therefore we were able to apply our improve-
ments directly into their fine-tuned implementation. Although the changes were not
straight-forward, eventually we modified the original code in two aspects (altogether
highly touching many places in the code):

— creating graph representation in the memory (by adding the FL compression),
— the function call controlling an access to the elements of C (decoding vertices).

The graph compression depends on the selected method’s parameters ¢, k and was

explained in Section [2.1]
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The internal architecture of the b40c implementation is using almost all available
on-chip shared memory. We were not able to utilize it in the decompression process.
Therefore the vertex decoding had to be done in a very simple way just using threads’
private registers and without any additional intercommunication between threads. This
solution required more memory operations and processing when compared to the ideal
one. The differences between the thread behavior in the original approach and our ap-
proach is presented in Figure

!
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Fig.2: A simple strategy of parallel values decoding. A) no compression. A single memory cell
stores a single value, which is read by a single thread. B) The FL compression. One memory cell
stores 1.5 values. Some threads need to read two cells with 100% cache hits. Overall cache usage
is decreased. No threads intercommunication.

An example of a decompression function is shown in Figure [I.T] It was prepared
for £ = 21 bits. Choosing another length would require slight changes in the function.
The key point in this code are modulo operations which are done by bit operations only.
They are necessary to find beginnings of compressed values. In some cases, if the value
is split across two memory cells, a thread needs to perform another read operation (see
line 13). This is necessary if we assume no communication between threads.

We believe that this approach will be successful also in other applications since it
allows for a random array access and imposes no additional restrictions.

Listing 1.1: An example of a data retrieving function. Ld_21_32 function with FL decompres-
sion for ¢/ =21 and k = 32 (three values are encoded in two subsequent integers) # — an index of
an element to be decoded.

#define NBITSTOMASK(n) ((l<<(n)) — 1)
#define GETNBITS(a,n) ((a) & NBITSTOMASK(n)) // returns aopda..a,
#define GETNPBITS(a, n, p) GETNBITS((a>>p), (n)) // returns aydpii..dpin-1

__device__ __forceinline__ static
void Ld_21_64(T &val, T #ptr, long n) {
unsigned int a = (unsigned) n;
a = (0x55555555*«a+(a>>1)—(a>>3))>>30;
unsigned int pos = ((unsigned)n—a)x0xAAAAAAAB;
pos = pos * 2 + (a>>1);
val = GETNPBITS(ptr[pos],21 —10=(a&1),((a*21)&31));
if (a&l)
val = val IGETNPBITS(ptr[pos+(a&l)],10%(a&l),0)<<11;




Table 1: Experimental data sets. The first group of columns shows the number of vertices, edges
and an average degree of each graph. The second group shows an optimal (¢) and a chosen by us
(¢") length of an encoding of a single value and k, being the size of a single memory cell. Third
group shows the size of C before compression, after compression with each value encoded on ¢
or /' bits and corresponding compression ratios .

Y

vert. | edges avg. l k C FL¢(C) | compr. | FLy(C) | compr.
Graph -10° -100 degree bits | bits | bits [MB] [MB] ratio () [MB] ratio ()
citationCiteseer 268 1.15 43 20 | 21 | 32 4.39 2.74 0.63 2.92 0.67
coAuthorsCiteseer || 227 | 0.81 3.58 20 | 21 | 32 3.09 1.93 0.63 2.06 0.67
coAuthorsDBLP 299 | 0.98 3.26 20 | 21 | 32 3.74 2.34 0.63 2.49 0.67
coPapersCiteseer 434 | 16.03 | 37.55 20 | 21 | 32 61.15 38.22 0.63 40.77 0.67
coPapersDBLP 540 | 15.24 28 20 | 21 | 32 58.14 36.33 0.63 38.76 0.67
RMI131Kv19Me 131 | 19.65 150 17 | 21 | 32 74.96 39.82 0.53 49.97 0.67
RM131Kv39Me 131 | 39.30 300 17 | 21 | 32 149.92 79.64 0.53 99.95 0.67
RM131Kv78Me 131 | 78.60 600 17 | 21 | 32 299.84 | 159.29 0.53 199.89 0.67
RM2Mv150Me 2000 | 150 150 21 | 21 | 32 57220 | 375.51 0.66 381.47 0.67
RM2Mv301Me 2000 | 301 301 21 | 21 | 32 1148.22 | 753.52 0.66 765.48 0.67
RM2Mv350Me 2000 | 350 350 21 | 21 | 32 1335.14 | 876.19 0.66 890.10 0.67
RM2Mv400Me 2000 | 400 400 21 | 21 | 32 1525.88 | 1001.36 0.66 1017.25 0.67
RM65.5Kv10Me 65.5 10 152.67 16 | 16 | 32 38.15 19.07 0.50 19.07 0.50
RM65.5Kv67Me 65.5 67 1022.90 16 | 16 | 32 255.58 127.79 0.50 127.79 0.50
RM65.5Kv104Me || 65.5 104 | 1587.78 16 | 16 | 32 396.73 198.36 0.50 198.36 0.50
RM65.5Kv268Me || 65.5 | 268 | 4091.60 16 | 16 | 32 1022.34 | 511.17 0.50 511.17 0.50

All the experiments were executed on the same model of GPU processor as the
experiments by Merrill ef al. [11]. Detailed hardware configuration: two six-core pro-
cessors Intel® Xeon® E5649 2.53GHz, 8GB RAM and Nvidia® Tesla M2070 card.

3.1 Discussion on results

The results of our experiments are shown in Table 2] (average value of 10 executions).

Compression Due to the limitation of the BFS implementation we worked with, we
could only use a very simple FL compression scheme with a random access to the array
of edges (C). Obviously in such a case the compression ratio depends on the number of
bits which are used to store a vertex identifier. In most of the reference sample data sets
only 21 bits were used, which was enough to pack three nodes into two integers (i.e. a
64 bit segment). In such cases, achieved compression ratio varied from 0.53 to 0.62 (of
the original size).

Let us now analyse how big graphs may be stored in a GPU device with 6 GB of
memory (this is the theoretical storage space of Nvidia® Tesla M2070), assuming that
the average degree of a node is 40 and the values are stored as 32-bit integers. Using
the CSR representation, a single vertex v requires 4 bytes for a corresponding cell in R
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Fig.3: Rate (edges per millisecond, greater is better) of the BFS algorihtm for graphs with
65.5- 10 vertices and different number of edges.

array and 40 - 4 bytes on average for the C, array. Therefore, in theory, a professional
GPU device with a memory of 6 442 450 944 bytes lets us to store a graph of up to
n =39 283 237 vertices (of course this would require to use all the memory just for the
graph representation, leaving no space for e.g. some additional structures used by the
algorithm, so it is just a theoretical upper bound). To store the indices of these nodes
we need 26 bits. By compressing the array C with FL method and using ¢ = 26 and
k =32, we could pack 6 values in 5 integers (by wasting 4 bits). A single vertex with its
out-edges needs now 4(1 + [%1) = 140 bytes on average. Therefore our graph with
n vertices would occupy only 5 499 653 180 bytes together gives 5.12GB. Memory
we saved in such a way would let us to store 6 734 629 additional vertices and their
compressed edges (note that the vertex indices still can be stored on 26 bits). In this
configuration we managed to increase the practical device capacity by over 17%. Notice
that this can be significantly improved for graphs with larger average degree (as the
number of bits needed to represent a vertex remains low and the size of C grows).

This may be crucial is some cases — e.g. a graph with 2 - 10° vertices and 400 - 10°
was too big to fit into the memory of the GPU device without a compression (Table [2).

We also observe that it would need a device with memory storage of 328 GB to use
all 32 bits in an integer encoding the vertex indices. Therefore, in the case of current
GPU devices, savings using the FL compression are always possible.

Another benefit of this compression method is that it can significantly decrease
the memory bandwidth when executing multi-GPU algorithms and whenever memory
transfer of a graph or its parts is used.

BFS Algorithm Time At the beginning we have to observe that the time of processing
of compressed graphs depends on two factors: a ratio between £ (or £') and k, i.e. the
efficiency of a compression (being the number of values we can pack into a single
memory cell) and an average degree of a vertex.

Moreover, we observe that the additional compression/decompression cost is com-
pensated for medium-sized graphs. For large graphs we are even able to speed up the
computation.



Table 2: The time of BFS processing for benchmark graphs [ms] (smaller is better). The
last column shows the improvement over the original solution (greater is better). The graph
RM2Mv400Me with 400 - 10° edges could not be processed without the compression.

Processing time [ms] |Speed up Processing time [ms]|Speed up

Graph b40c b40c+FL [%] Graph b40c b40c+FL [%]
citationCiteseer 2.9948 3.4951 -14.31 RM2Mv150Me | 61.3072 | 59.4512 3.12
coAuthorsCiteseer| 2.0487 2.6138 -21.62 RM2Mv301Me 115.656 | 111.2375 3.97
coAuthorsDBLP | 2.4007 2.9336 -18.17 RM2Mv350Me  [132.7916| 127.9881 3.75
coPapersCiteseer |12.7294| 14.2871 -10.90 RM2Mv400Me X 144.6979 X

coPapersDBLP 11.5055| 12.5845 -8.57 RM65.5KvI0Me | 4.6509 43214 7.62
RMI131Kv19.6Me | 7.0177 7.0178 0.00 RM65.5Kv67Me | 22.9852 | 20.9861 9.53
RM131Kv39.3Me [ 12.6992| 12.5758 0.98 RM65.5Kv104Me| 35.6296 | 32.466 9.74
RMI131Kv78.6Me | 23.897 | 23.5884 1.31 RM65.5Kv268Me| 97.943 86.212 13.61

4 Conclusions and Future Work

We have presented a method of compressing graphs stored in the CSR format and pro-
cessed in GPU devices. Our solution is characterized by an ultra-fast decompression
time, a simplicity of integration with already existing algorithms and an optimization
of parallel threads computation.

We evaluated our solution against the state-of-the-art in graph algorithms — the
highly-optimized BFS implementation for GPU devices by Merrill ef al. [[L1]. Our re-
sults show that for big graphs the compression not only allows to fit more vertices and
edges into a single GPU, but also speeds up the processing by a better utilization of
memory caches.

We believe that our improvement can also be used in a case of a distributed com-
putation performed on multiple GPU nodes or in clusters. Using a compression should
significantly speed up the most critical operation, which is a data transfer.
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